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Abstract

The purpose of this project was to build a MonoSLAM
algorithm capable of mapping both the camera location and
that of objects in the environment without help from GPS or
other locationing devices. This paper goes over the creation
of an EKF-SLAM algorithm, as well as how to use 1-point
RANSAC to create point-cloud imaging from sets of a single
image.

1. Introduction
Simultaneous Location and Mapping (SLAM) consists

of being able to correctly map an environment while at the
same time determining one’s location within the map. Be-
cause this would allow a robot to be ”truly autonomous”
(as it would not need outside help for navigation), SLAM
has been considered a ”holy grail” problem for mobile
robotics1. This is because, until the past couple decades,
the compounded error of estimating position from distance,
and vice versa, was thought to become unbounded. That is,
the combined use of position and mapping data would make
both estimates become unreliable.

2. Problem Statement
The algorithm relies on this probability distribution:

P (X0:k,m|Z0:k, U0:k, x0) =
P (m|X0:k, Z0:k)P (X0:k|Z0:k, U0:k, x0).

Where X0:k is the overall trajectory being followed in-
stead of a single pose.

The SLAM algorithm consists of several steps:

1. Feature detection via SIFT/FLANN

2. Feature extraction via RANSAC

3. Updating physical and object locations via the Ex-
tended Kalman Filter

First, there must be a scale-invariant way to determine
common points between the pictures.

Although most traditional SLAM algorithms use Joint
Compatibility Branch-and-Bound (JCBB) to determine the
best fit for the data, they usually are unnecessarily intensive
and slow due to JCBB’s exponential runtime. Therefore, we
use a RANSAC algorithm, which determines the best curve
fit from a randomly generated algorithm and a stochastic
pre-conditioning of previous lines.

The Extended Kalman filter is used to make sure the
compounded error from the position and velocity estimates
converge to the smallest value. In order to do so, it takes in
the closeness of a given measurement to a predicted value
and thereby determines the ”weight” the measurement will
have in the calculation of the final value (this will be re-
ferred to as the gain).

3. Technical Content
First, the SLAM algorithm needs an estimation of where

the location of the camera currently is. This is done by in-
terpolating the kinematic data of the device.

In order to determine a single point, one can also find
the essential matrix E. This can be done by first finding
the fundamental matrix F via point correspondence, then
using the formula

E = KTFK
to determine E. From there, the position of the camera, if

not rotated, is the essential matrix converted from the cross-
product matrix tx.

Secondly, this estimate must be calibrated via external
image points. From the current view and past locations,
the camera must determine the location of several relevant
world points to orient itself. However, calculations of an
object based on a single correspondence point are often
inaccurate and lead to inaccurate estimations. Therefore,
SLAM algorithms go through a tree of stored in order to
determine the most likely location of a given point. Most
SLAM code uses Joint Compatibility Branch-and-Bound.
This algorithm is an extension of the Nearest Neighbor ap-
proach, which greedily chooses the location in the previous
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level closest to that of the current estimation. Instead, JCBB
determines the best fit for both ends.

In this project, JCBB was discarded in favor of Ran-
dom Sample Consensus, or RANSAC. Rather than check
each member of a branch, which takes exponential time,
RANSAC relies on sampling the data and updating the line
of best fit until convergence.

The two samples are then taken through an Extended
Kalman Filter. The filter approximates the position of the
robot, xk, as well as each detected landmark, zk, as follows:

xk = f(xk−1) + wk

zk = h(xk) + vk

where f(x) is the approximated velocity described
above, h(xk) is the projected geometry of the point zk via
RANSAC, and wk and vk are Gaussian distributions about
the means of f(xk) and h(xk) respectively (i.e. the source
of error). From there, the Kalman filter ”predicts” the ac-
tual xk, as well as the observation prediction Pk using the
variance Qk:

x̂k = f( ˆxk−1)
Pk = Fk−1Pk−1F

T
k−1 +Qk−1

where Fk−1 is the Jacobian of f(xk). Next, in order to
merge the current guess with the rest, Gk, the ”gain” which
determines the weight of each point, is found:

Gk = PkHk(HkPkH
T
k +R)−1

where R is the covariance of the system. From there, the
difference between the expected versus given observation is
factored into xk and Pk updated:

x̂k = x̂k +Gk(zk − h(xk))
Pk = (I −GkHk)Pk

This process is repeated until convergence. This will greatly
improve the overall error of a system.

4. Experimental Setup and Results

Although this was originally developed for a mobile de-
vice, it was considered better to use and test still images
first before trying the actual device. This was to focus more
on the computer vision side of the project rather than the
application side. To work with the device, however, the
camera matrix needed to be extracted from the system. For
that, a Matlab toolbox was used with phone camera images
of the checkerboard box. The resulting camera matrix was
recorded and used for all subsequent images.

As for the testing, the camera took several photos of
objects in a room. Although the exact dimensions of the
objects were unknown (approximately 2 meters from the
camera), the displacement of the camera was recorded. The
camera took photos at an origin, 300 millimeters to the left,
300 millimeters to the right, 250 millimeters in front, 250
millimeters behind. It would be up to the camera to check
the locations recorded by the object.

The testing process first consisted of several manually
recorded points. The results were then extrapolated from
similar points on two images (each with the measurements
shown above). Once reasonable points were attained from
the set, the experiment moved on to using SIFT and FLANN
to automatically determine common features between the
images.

A working EKF filter, though not implemented in the
final system, was also implemented, as well as methods
to compute the required Jacobians Hk and Jk (mentioned
above).

5. Conclusions
Overall, although the tests separately worked, the exper-

iment was not able to gather together well. The results were
similar to that of the cited papers in terms of accuracy at
each step in the process.
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